167 research outputs found

    An EPTAS for Scheduling on Unrelated Machines of Few Different Types

    Full text link
    In the classical problem of scheduling on unrelated parallel machines, a set of jobs has to be assigned to a set of machines. The jobs have a processing time depending on the machine and the goal is to minimize the makespan, that is the maximum machine load. It is well known that this problem is NP-hard and does not allow polynomial time approximation algorithms with approximation guarantees smaller than 1.51.5 unless P==NP. We consider the case that there are only a constant number KK of machine types. Two machines have the same type if all jobs have the same processing time for them. This variant of the problem is strongly NP-hard already for K=1K=1. We present an efficient polynomial time approximation scheme (EPTAS) for the problem, that is, for any Īµ>0\varepsilon > 0 an assignment with makespan of length at most (1+Īµ)(1+\varepsilon) times the optimum can be found in polynomial time in the input length and the exponent is independent of 1/Īµ1/\varepsilon. In particular we achieve a running time of 2O(Klogā”(K)1Īµlogā”41Īµ)+poly(āˆ£Iāˆ£)2^{\mathcal{O}(K\log(K) \frac{1}{\varepsilon}\log^4 \frac{1}{\varepsilon})}+\mathrm{poly}(|I|), where āˆ£Iāˆ£|I| denotes the input length. Furthermore, we study three other problem variants and present an EPTAS for each of them: The Santa Claus problem, where the minimum machine load has to be maximized; the case of scheduling on unrelated parallel machines with a constant number of uniform types, where machines of the same type behave like uniformly related machines; and the multidimensional vector scheduling variant of the problem where both the dimension and the number of machine types are constant. For the Santa Claus problem we achieve the same running time. The results are achieved, using mixed integer linear programming and rounding techniques

    Precedence-constrained scheduling problems parameterized by partial order width

    Full text link
    Negatively answering a question posed by Mnich and Wiese (Math. Program. 154(1-2):533-562), we show that P2|prec,pjāˆˆ{1,2}p_j{\in}\{1,2\}|Cmaxā”C_{\max}, the problem of finding a non-preemptive minimum-makespan schedule for precedence-constrained jobs of lengths 1 and 2 on two parallel identical machines, is W[2]-hard parameterized by the width of the partial order giving the precedence constraints. To this end, we show that Shuffle Product, the problem of deciding whether a given word can be obtained by interleaving the letters of kk other given words, is W[2]-hard parameterized by kk, thus additionally answering a question posed by Rizzi and Vialette (CSR 2013). Finally, refining a geometric algorithm due to Servakh (Diskretn. Anal. Issled. Oper. 7(1):75-82), we show that the more general Resource-Constrained Project Scheduling problem is fixed-parameter tractable parameterized by the partial order width combined with the maximum allowed difference between the earliest possible and factual starting time of a job.Comment: 14 pages plus appendi

    Star Routing: Between Vehicle Routing and Vertex Cover

    Full text link
    We consider an optimization problem posed by an actual newspaper company, which consists of computing a minimum length route for a delivery truck, such that the driver only stops at street crossings, each time delivering copies to all customers adjacent to the crossing. This can be modeled as an abstract problem that takes an unweighted simple graph G=(V,E)G = (V, E) and a subset of edges XX and asks for a shortest cycle, not necessarily simple, such that every edge of XX has an endpoint in the cycle. We show that the decision version of the problem is strongly NP-complete, even if GG is a grid graph. Regarding approximate solutions, we show that the general case of the problem is APX-hard, and thus no PTAS is possible unless P == NP. Despite the hardness of approximation, we show that given any Ī±\alpha-approximation algorithm for metric TSP, we can build a 3Ī±3\alpha-approximation algorithm for our optimization problem, yielding a concrete 9/29/2-approximation algorithm. The grid case is of particular importance, because it models a city map or some part of it. A usual scenario is having some neighborhood full of customers, which translates as an instance of the abstract problem where almost every edge of GG is in XX. We model this property as āˆ£Eāˆ’Xāˆ£=o(āˆ£Eāˆ£)|E - X| = o(|E|), and for these instances we give a (3/2+Īµ)(3/2 + \varepsilon)-approximation algorithm, for any Īµ>0\varepsilon > 0, provided that the grid is sufficiently big.Comment: Accepted to the 12th Annual International Conference on Combinatorial Optimization and Applications (COCOA'18

    An Optimization Approach to the Ordering Phase of an Attended Home Delivery Service

    Full text link
    Attended Home Delivery (AHD) systems are used whenever a supplying company offers online shopping services that require that customers must be present when their deliveries arrive. Therefore, the supplying company and the customer must both agree on a time window, which ideally is rather short, during which delivery is guaranteed. Typically, a capacitated Vehicle Routing Problem with Time Windows forms the underlying optimization problem of the AHD system. In this work, we consider an AHD system that runs the online grocery shopping service of an international grocery retailer. The ordering phase, during which customers place their orders through the web service, is the computationally most challenging part of the AHD system. The delivery schedule must be built dynamically as new orders are placed. We propose a solution approach that allows to (non-stochastically) determine which delivery time windows can be offered to potential customers. We split the computations of the ordering phase into four key steps. For performing these basic steps we suggest both a heuristic approach and a hybrid approach employing mixed-integer linear programs. In an experimental evaluation we demonstrate the efficiency of our approaches

    A Tight 2-Approximation for Preemptive Stochastic Scheduling

    Full text link

    Genome sequencing of the extinct Eurasian wild aurochs, Bos primigenius, illuminates the phylogeography and evolution of cattle

    Get PDF
    Background Domestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals. Results Phylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle. Conclusions This work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought

    On the Origin of Indonesian Cattle

    Get PDF
    Background: Two bovine species contribute to the Indonesian livestock, zebu (Bos indicus) and banteng (Bos javanicus), respectively. Although male hybrid offspring of these species is not fertile, Indonesian cattle breeds are supposed to be of mixed species origin. However, this has not been documented and is so far only supported by preliminary molecular analysis. Methods and Findings: Analysis of mitochondrial, Y-chromosomal and microsatellite DNA showed a banteng introgression of 10-16% in Indonesian zebu breeds. East-Javanese Madura and Galekan cattle have higher levels of autosomal banteng introgression (20-30%) and combine a zebu paternal lineage with a predominant (Madura) or even complete (Galekan) maternal banteng origin. Two Madura bulls carried taurine Y-chromosomal haplotypes, presumably of French Limousin origin. In contrast, we did not find evidence for zebu introgression in five populations of the Bali cattle, a domestic form of the banteng. Conclusions: Because of their unique species composition Indonesian cattle represent a valuable genetic resource, which potentially may also be exploited in other tropical regions. Ā© 2009 Mohamad et al
    • ā€¦
    corecore